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Abstract. Particle-in-cell (PIC) methods are widely used on today’s
supercomputers. In this paper we consider JuSPIC, an application for
which good scaling properties could be demonstrated on a 6 PFlop/s
Blue Gene/Q system. We report on efforts to port this application to
emerging supercomputing architectures based on IBM POWER processors
and NVIDIA graphics processing units.
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1 Introduction

Numerical methods are key for investigating laser-plasma interactions due to the
non-linear nature of the problem and the non-trivial geometries implied in the
problem. Most commonly used is the particle-in-cell (PIC) method for simulating
the motion of charged and neutral plasma particles. PIC codes solve Maxwell’s
equations on a grid using currents and charge densities calculated by weighting
discrete particles onto the grid. In each update step, position and momentum of
each particle are updated based on forces acting on them, which are obtained
from self-consistently calculated fields. The development and use of this methods
goes back into the 1950-60s [13].

Due to its intrinsic high level of parallelism, PIC applications simulating
millions of particles are good candidates for massively-parallel computer architec-
tures. In this contribution we focus on a special type of such architectures, which
are based on IBM POWER processors and graphics processing units (GPU) from
NVIDIA. Such solutions have become available only recently and the ecosys-
tem for these is still emerging. In this paper we will explore the performance
for JuSPIC, a PIC code developed at Jülich Supercomputing Centre, on IBM
S822LC servers (also known as “Minsky”), which features novel tight integration
of processor and GPU based on the new NVLink technology.

This paper makes the following contributions:

1. A port of JuSPIC to the Minsky platform and report of experiences for
different porting strategies.

2. Analysis of the performance as a function of different hardware settings
employing a semi-empirical performance modelling approach.
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Fig. 1: Core steps of JuSPIC. After initializing (Init), the E and B fields are
computed and communicated for a half-time step (Field Solver). Following this,
the particle and density information is updated. The Pusher uses information from
the grid to update particle information, the Reducer again takes this information
to update the grid. A communication step ensues, before this iterations concludes
with another invocation of the Field Solver. The algorithm is started again at
the first Field Solver. Data can be written/output after one chain (I/O).

3. Report on experience in optimisation for this new platform.

The paper is organised as follows: After the introductory Section 2 we introduce
the architecture of the compute platform used in this paper in Section 3. We
report in Section 4 on porting JuSPIC to GPUs, before presenting performance
results in Section 5. After providing an overview on related work in Section 6 we
summarise our results and present our conclusions in Section 7.

2 JuSPIC

JuSPIC [1,8], the Jülich Scalable Particle-in-Cell (PIC) code is used to simulate
particles in electromagnetic fields. Like other PIC codes, it can be used as a
numerical tool in the field of intense laser-plasma interaction, e.g. to simulate
the generation of energetic electrons and ions with help of the radiation field of a
laser to study approaches for table-top particle accelerators. The code is based
on H. Ruhl’s Plasma Simulation Code (PSC) [7] and further developed at the
Jülich Supercomputing Centre (JSC) mainly for testing new HPC architectures
and programming models. But it has also been used to support experimental
investigations of relativistic, highly non-linear laser-plasma interaction acting as
Terahertz light-source [12].

The interaction between fields and plasma is described by the relativistic
Vlasov equation and Maxwell’s equations. JuSPIC uses a regular mesh for the
Maxwell fields and particle charge and current densities that are then integrated
using the Finite-Difference-Time-Domain (FDTD) scheme. Plasma particles are
modelled via distribution functions of quasi-particles with continuous coordinates
within the mesh. Finite element approximations of the distribution functions are
then used to integrate the Vlasov equation along the particle trajectories. [6,15]

Omitting details about PIC codes in general, let us note that due to the
required high particle numbers, the coupled system of Vlasov and Maxwell
equations requires two very time-consuming steps: First, the particle update,
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computing new particle positions and velocities that requires the interpolation
of the electromagnetic fields from their mesh coordinates to the position of the
quasi-particles. We denote this part the pusher ; it is the main focus of our GPU
acceleration. The second step is the reduction of the continuous charge and
particle densities of each quasi-particle onto the mesh (the reducer). This sparse
reduction poses a special challenge since it happens irregularly on very large
fields and is a non-local operation.

JuSPIC is written in modern Fortran and parallelised with MPI and OpenMP.
The basic operation of the algorithm is outlined in Figure 1. It is capable of
scaling to the full JUQUEEN system, a 28-rack IBM Blue Gene/Q using 1.8M
hardware threads and listed in the High-Q Club [2]. JuSPIC is Open Source [3].

3 Compute Platform

The performance results shown in this paper have been obtained in large parts
on JURON, a cluster based on IBM S822LC servers. Each server comprises 2
IBM POWER8 processors with 2 NVIDIA P100 GPUs each. One processor and
2 GPUs are interconnected in a ring topology using NVLink.

In this server, 4 out of 8 DMI channels per processor are used for attaching
Centaur memory chips to which the DDR4 memory is attached. The GPUs
use a new high-bandwidth memory technology called HBM2, which allows for
significantly higher memory bandwidth but limited memory capacity. Due to the
new NVLink connections, the bi-section bandwidth for data transport between
processor and GPUs is similar to the processor-memory bandwidth.

Key hardware performance numbers are summarised in Table 1.
Additionally, two x86 systems are referenced in parts of this paper:

JUHYDRA A testing system with 2 Intel Xeon E5-2650 CPUs (2 GHz) and 2
NVIDIA Tesla K20Xm and K40m GPUs, each, attached via PCIe.

JURECA Jülich’s large multi-purpose supercomputer with nodes with 2 Intel
Xeon E5-2680 CPUs (2.5 GHz) and 2 PCIe-attached NVIDIA Tesla K80
GPUs (appearing as 2 GPU devices, each).

4 Acceleration for GPUs

For JuSPIC, a hybrid approach in acceleration for GPUs has been chosen. Parts
of the code have been ported employing the OpenACC programming model,
parts use CUDA Fortran.

4.1 OpenACC

In OpenACC, code to be accelerated is annotated with statements which are
interpreted by a capable compiler to create programs for GPUs or other many-
core systems. Since these compiler directives are usually in the form of comments
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Table 1: Selected (nominal) hardware parameters for the IBM S822LC servers.

IBM POWER8 processor

Number of processors 2
Default clock frequency 3491 MHz
Total number of cores 20
Aggregate throughput of floating-point operations (DP) 559 GFlop/s
Aggregate memory read bandwidth 77 GByte/s
Aggregate memory write bandwidth 154 GByte/s
Aggregate memory capacity 256 GByte

NVIDIA P100 GPU

Number of GPUs 4
Default clock frequency 1328 MHz
Total number of SMs 224
Aggregate throughput of floating-point operations (DP) 19038 GFlop/s
Aggregate memory bandwidth 2880 GByte/s
Aggregate memory capacity 128 GByte

Aggregate CPU-GPU bandwidth 160 GByte/s

in the code, portability across many different systems is achieved. Depending
on the capabilities of the compiler, different accelerator architectures can be
targeted from the same code base. For JuSPIC, the PGI compiler (version 16.10)
is used. It features both support for OpenACC and CUDA Fortran.

OpenACC is used in JuSPIC to move data between the host and the device.
Data regions are created to move data, partly asynchronously, to device or host
memory depending on where the next part of the program operates. As an example,
the first region is created by !$acc enter data async copyin(e,b,ji) which
creates a copy of the matrices e, b, and ji on the GPU asynchronously. Data is
transferred back, and also updated as-needed in subsequent steps of the algorithm.
In the absence of any acceleration device, the compiler produces a version of the
program in which the data regions are omitted.

OpenACC is used furthermore to port the time propagation of the electric
and magnetic fields to the GPU. For each field, a three-fold nested loop updates
three directions in space for different indexes. The kernels directive is used,
giving the compiler the most freedom to accelerate the scope of the multiplication:
!$acc kernels loop collapse(3) present(e,b). The three loops are merged
into a loop of one level by the collapse clause; the electro-magnetic fields are
already on the device, since they have been copied asynchronously beforehand.
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4.2 CUDA Fortran

By far the most compute-intensive part of JuSPIC is the update of particle
velocities and momenta in the pusher. In an initial attempt, this part was also
enabled for the GPU with OpenACC. Unfortunately, the structure of the code
was yet to be supported by the compiler. Many structured data types (e.g.
particles(i)%x(0)), operations on whole fields at once (b=a*2, where a and
b are both fields), as well as the amount of operations on the data prevented
efficient code generation by the compiler. The algorithm needed to be adapted
vastly to make it more recognisable for the compiler. With those changes, the
initially non-compiling OpenACC pusher did compile, but ran very slow. Only
a version of the algorithm, which had each operation on a whole field replaced
by operations on the individual elements of the field ran reasonably well. We
decided to rather return to the original pusher algorithm and use CUDA Fortran
to port it to the GPU. [14]

CUDA Fortran is a Fortran interface to NVIDIA’s CUDA C/C++ program-
ming model. It is developed by PGI and available in their Fortran compilers. It is
modelled closely alongside CUDA C/C++ and additionally implements features
of the Fortran programming language, like operations on whole fields.

Using CUDA Fortran, the pusher kernel is ported to the GPU. The origi-
nal, serial code is taken, the do loop over the particles removed, and replaced
with threadIdx%x-based indexing in typical CUDA fashion. Compatibility to
systems without GPUs or CUDA Fortran is ensured by wrapping the specialised
GPU parts with pre-processor macros. This way, either the original pusher loop
is called in the absence of CUDA Fortran, or the GPU kernel is called with
call gpupusher<<<dim3(nBlocks, 1, 1), dim3(nThreads, 1, 1)>>>.

Writing the pusher kernel in CUDA Fortran enables the evaluation of different
strategies of handling the data of the particles. We study four cases:

1. All particles are stored in a single field, one particle after another, the field
is copied to and from the GPU with CUDA Fortran (Initial).

2. As above, but data is copied using OpenACC copy statements (Experiment
One (Exp 1)).

3. As above, data is copied with OpenACC statements, from pinned (zero-copy)
host memory (Experiment Two (Exp 2)).

4. Instead of one field holding all data from all particles, spatial and momentum
components for all particles are stored in separate fields (six fields in total);
data is copied with CUDA Fortran statements (Structure-of-Array Approach
(SoA)).

The results of the four cases are summarised in Table 2, averaged per in-
vocation of the GPU pusher. Shown is JURON (with a P100 GPU) and, as a
comparison, JUHYDRA (using a K40 GPU). In the table, Kernel denotes the
runtime of the GPU pusher kernel itself. H2D and D2H shows the time spent
for copying data to and from the GPU, respectively. Others incorporates the
time the GPU is not processing or copying data – the device usually waits for
instructions or synchronises. Allocate refers to the time needed to allocate a
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Table 2: Runtimes of the particle pusher of JuSPIC on the GPU for different
methods of data handling.
Legend: Allocate – Allocate host-side memory region; LL2F – Convert linked list data

structure to field; H2D – Transfer data from host to device; D2H – Transfer data from

device to host; F2LL – Copy data from field to linked list data structure.

in µs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

JURON

Initial 8039.71 – 567.27 81.86 83.71 61.70 350.19 6884.87
Exp 1 10434.51 – 353.08 80.39 81.82 91.48 379.87 9440.10
Exp 2 9695.39 563.50 526.69 79.19 82.57 72.38 107.87 7972.61
SoA 7810.95 0.94 843.69 65.74 76.57 53.03 376.25 6386.24

JUHYDRA

Initial 4955.59 – 907.63 267.11 229.27 207.62 735.92 2600.14
Exp 1 4687.25 – 763.99 231.58 228.51 197.59 804.41 2455.00
Exp 2 5328.37 576.97 1026.94 223.56 229.65 192.17 23.17 2651.33
SoA 4879.61 1.05 785.84 204.14 207.58 173.40 826.55 2673.97

memory region on the host side (for pinned memory in case of Exp 2 and for
the individual SoA fields in case of SoA). LL2F and F2LL are pre-processing
steps: The format in which JuSPIC stores particles is a linked list, with each
particle including a pointer to the next. To enable coalesced loads on the GPU,
data is copied from a linked list to a field before GPU kernel invocation and from
a field back to a linked list after completion – LL2F and F2LL, respectively. The
relatively high runtimes of these parts are analysed and discussed in Section 4.3.

Looking at each of the architectures, the runtimes of data copies and kernels in
the SoA approach is in all cases the fastest. The data layout is not only beneficial
for efficient execution but also for data movements. In case of preparing the data
in the LL2F step, SoA is the slowest. The explicit filling of two three-vectors
(position, momentum) to individual and distinct memory locations from one
packed source particle seems to take more time then the simple copy from one
memory position to another. For the post-processing F2LL step, the case appears
to be inverted (see also Section 4.3). For Exp 2, where pinned memory is used,
the overhead in form of waiting for data is the smallest. In this case, the CUDA
runtime can omit safety measures and directly access the data. Unfortunately, the
benefit in time is diminished by the overhead of allocating the pinned memory.

Comparing the two GPU (and also system) architectures shows that the
P100 has, in nearly all cases, the lesser runtime (with F2LL being an important
deviation, see Section 4.3). About a factor of 3 in performance gain can be
obtained compared to using a K40m GPU.

Further potential optimization can be integrated combining the distinct
benefits of the individual approaches. In the current implementation of Exp
2, pinned memory is allocated once before the pusher loop and deallocated
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afterwards. Moving the data region one level up would enable a more data-
economical approach: Pinned memory can be allocated once at the beginning of
the algorithm and only reallocated if the number of particles changes during the
run of the algorithm. This is a strategy already employed by the SoA version. In
the SoA version, though, pinned memory has not yet been tested. Since pinned
memory leads to less overhead during the GPU pusher runtime, this could be a
very rich modification.

In the current state of the algorithm, data transfers to and from the device
take a significant fraction of time on the GPU. Our hope is that once the next
part of the algorithm, the reducer, is ported to the GPU as well, most of the data
transfers can be saved, since the majority of the data would stay on the GPU for
different iterations. This is the case as well for the changes in data layout (linked
list, fields). The Unified Memory feature of CUDA, which uses efficient page
faults in CUDA 8.0 and on Pascal GPUs, promises to be a productive technique
to reduce data migrations to a minimum.

4.3 Investigation of Slow Data Layout Conversion

Striking in the numbers of Table 2 are the times taken for copying data from
fields to linked lists, F2LL. The runtimes of 6 ms to 9 ms for each invocation of
the pusher are about 2.5× higher than on a x86 system.

In a benchmark study, we investigate the reason for this. We create linked
lists for different numbers of particles, fill them, and destroy them again. We
study different architectures: the two Intel-based architectures of JURECA and
JUHYDRA and the POWER8NVL system of JURON. Additionally, different
compilers are tested: the PGI Fortran compiler with and without an MPI wrap-
per1; the Fortran compiler from the GNU Compiler Collection (gfortran, GCC )
with and without MPI; and the XL Fortran compiler, XLF, if available. The
part of the benchmark code which fills the linked list – add_one_to_list – is
implemented the following way:

allocate(list%tail%next)

nullify(list%tail%next%next)

list%tail%next%particle = particle

list%tail => list%tail%next

Using this scheme, each particle is added to the list iteratively.
Figure 2 displays the time spent for adding one particle to a linked list

for different total list sizes and different compiler and system configurations.
Systematically, on each system, GCC-compiled benchmarks take the least time
for the operation. The PGI case is always 30 % to 60 % slower, compared to the
respective runtime of a GCC-compiled program. On JURON, the XLF compiler
produces code which is about as fast as the GCC version. The time spent for
adding one particle to the list decreases with growing number of total particles

1 The compiler ships with its own compiled OpenMPI version.
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Fig. 2: Runtimes for adding a particle to a linked list vs. total number of added
particles to the list for different compilers. Note: The data point of XLF for
100 000 particles is missing as the program reported no meaningful time in this
case.

for most of the versions tested on x86 – in these cases, there seems to be a
undetermined overhead present which becomes more and more negligible2.

The most important feature of the plot is the runtime of benchmarks com-
piled with MPI and underlying PGI compiler on JURON. The PGIMPI case
is consistently at least 2× slower then the comparable PGI version. This is
remarkable, since in both versions the same pgfortran compiler is used with
identical compiler flags and resulting object code – just with an additional MPI
wrapper in one case.

Using PAPI [17,18], we measure the number of instructions completed in
the case of destroying a list in the benchmark. We choose destruction of a list
over creation because this part of the code involves even fewer overhead. The
performance counter measured with PAPI is PAPI_TOT_INS, which maps on
JURON to PM_INST_CMPL and on JUHYDRA to INSTRUCTION_RETIRED. Table 3
summarises the measurements for different compilers. PGIMPI* in this case is a
custom OpenMPI 2.0 version which is explicitly compiled for the benchmark test
case. JuSPIC has yet to be run with this custom MPI version, as it is not officially
supported by the PGI compiler version. The version of GCC is 5.4.0, PGI is of
version 16.10 on JURON and 16.3 on JUHYDRA. On JURON, GCCMPI uses
OpenMPI 2.0.2 and PGIMPI uses OpenMPI 1.10.2 – the version shipped with

2 Measurements show that the number of completed instructions is linear with the
number of particles, so the overhead seems to come from the timing operation.
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Table 3: Number of instructions of and time spent for clearing a linked list. The
values are for a list of 10 million elements, but shown normalised per particle
(pP). Time per particle is rounded to the nearest integer.

System JURON JUHYDRA
Compiler GCC GCCMPI PGI PGIMPI PGIMPI* XLF PGI PGIMPI

Time pP/ns 36 37 46 154 – 41 32 32
Instructions pP 121 121 243 462 243 121 210 210

the PGI compiler. The XLF version is 16.1.0. The MPI version used together
with PGI on JUHYDRA is OpenMPI 1.8.1.

The results of runtimes already seen in Figure 2 correlate with the number of
completed instructions. The PGI compiler produces code which is slightly slower
compared to the GCC version; in terms of instructions about twice as many are
completed. The PGIMPI case doubles the number of instructions of the MPI-less
PGI version further. At the same time, the number of instructions per cycle is
reduced from about 2 to about 0.8.

The source code for creating and destroying linked lists is very simple. The
only other operation apart from changing pointers is allocation and deallocation,
respectively, see the code snippet at the beginning of Section 4.3. We suspect
that the reason for the long runtimes lies in this allocation and deallocation.

When MPI is loaded on top PGI, a number of different libraries are linked
additionally compared to the bare PGI case. We reckon that one of the libraries
loaded replaces the memory allocation call with a particularly slow one in the
JURON case. We test this assumption by using the linker’s environment variable
LD_PRELOAD to force loading of a specific malloc call when invoking JuSPIC–
we use LD_PRELOAD=/lib64/libc.so.6. This indeed removes the instruction
overhead compared to the bare PGI case entirely.

A second test replaces the PGI-shipped OpenMPI version with our own
custom-compiled OpenMPI, PGIMPI*. Also in this case, the overhead is reduced
to zero. The overhead hence seems to be tightly connected to the specific MPI
version shipped with the PGI compiler on the POWER system3.

While the strategies employed during investigation (LD_PRELOAD, custom
OpenMPI) can be easily applied to the benchmark case, further in-detail studies
are needed for the whole of JuSPIC to judge all ramifications and side-effects.

For the time being, we consider time spent for converting between linked lists
and fields in the F2LL and LL2F regions an overhead, which is anomalously high
in the system/compiler configuration at hand. The initial mitigation strategy in
the future will be to test our custom OpenMPI version thoroughly with JuSPIC;
a bug report with the vendor of the compiler has been filed. In a mid-range time
frame we hope to retire the linked list implementation of particles in JuSPIC in
favour of a field approach globally, to better match the requirements of modern
many-core architectures. Linked lists were chosen in the original design of JuSPIC

3 True for both PGI 16.10 and PGI 17.1.
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Fig. 3: GPU kernel duration as a function of exchanged information for four
different GPUs: K20, K40, 1⁄2 K80, and P100. Shown in the legend are fit
parameters to the performance model.

because they were the fastest of the tested options to perform the sparse global
reduction after the particle pusher in a multi-threaded approach [8].

5 Performance Modelling

To compare different GPU architectures and understand the behaviour of JuSPIC,
we study the code in the scope of a simple performance model.

5.1 Determination of Effective Bandwidth

Our model incorporates the exchanged information of the kernel for a given
amount of processed particles. It is a lower limit of the achieved bandwidth of
the program. The model is parameterised by

t(Npart) = α+ I(Npart)/β , (1)

where α and β are fit parameters and I is the exchanged information, resulting
in a kernel runtime of t. We call β the effective bandwidth. The tested version of
the pusher kernel reads 572 Byte and stores 40 Byte per particle.

Figure 3 shows results of the performance model in Equation 1 for different
numbers of particles, leading to different amounts of exchanged information.
Four different NVIDIA GPUs are studied: Tesla K20 and K40 devices (both
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on JUHYDRA), one part of a Tesla K80 GPU (1⁄2 K80; on JURECA), and the
Pascal P100 on JURON. In all cases, the GPU boost feature, which automatically
increases the graphics clock rate of the devices, has been disabled and the clock
fixed to its default size.

From the linear regressions, which are superimposed in Figure 3, the effective
bandwidths as of the performance model can be deduced:

K20: 77 GB/s K40: 95 GB/s 1⁄2K80: 100 GB/s P100: 285 GB/s
The utilised bandwidth is higher for the K80 (42 %) than for the K40 (33 %),

since the maximum available bandwidth is lower for the K80 (240 GB/s) than
for the K40 (288 GB/s). The efficiency of JuSPIC on this device is higher. The
same bandwidth utilization of the K80 is achieved for the P100 device: About
40 % of the available 720 GB/s bandwidth is used.4 The absolute value of utilised
bandwidth is higher (285 GB/s), caused by the new Pascal architecture features:
The higher bandwidth to the HBM2 memory offers more throughput of data,
while the greater number of multiprocessors leads to more computations per time
and more threads in flight. The occupancy of the GPU device is kept constant.
The pusher kernel can be expected to be limited by memory access latencies. A
larger number of active blocks could help hiding such latencies. However, such an
increase of device-side parallelism is not possible as the large number of registers
used by the kernel causes the number of available registers to become exhausted.

5.2 Clock Rates

Another parameter of GPU architectures are the clock rates with which the GPU
operates. The P100 device on JURON can operate with graphics clocks between
544 MHz and 1480 MHz (the memory clock is fixed at 715 MHz); the K40 device
operates between 666 MHz and 875 MHz at a memory frequency of 3004 MHz;
the K80 can run with 562 MHz to 875 MHz at a slightly lower memory frequency,
compared to the K40, of 2505 MHz.

Building upon the performance model of Equation 1 the following relation
can be formulated to model the effect of different GPU clock rates (C) on effective
bandwidths (β):

β(C) = γ + δC (2)

As before, γ and δ are fit parameters.
To obtain δ and γ for one device, each effective bandwidth β for a possible

clock rate is obtained per Equation 1 – in each case the runtime of the GPU
pusher kernel is measured for different amounts of exchanged information (number
of particles), and the slope of the linear fit noted. The resulting measurements
are shown in Figure 4 for the three GPUs.

4 Although the value of 720 GB/s is the design value of the P100, it might be different
from a practical achievable bandwidth. Indeed, we measure a bandwidth of about
520 GB/s for the four mini-benchmarks of the STREAM benchmark. Using this as
a reference value, the pusher kernel manages to use slightly more than 50 % of this
empirically determined bandwidth limit.



12 Lecture Notes in Computer Science: Andreas Herten et al.

600 800 1000 1200 1400
Graphics Clock Frequency / MHz

100

150

200

250

300
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 /

 G
B/

s

0.138 GB/s / MHz
0.037 GB/s / MHz

0.106 GB/s / MHz

0.146 GB/s / MHz

K40
½ K80
P100

Fig. 4: Effective bandwidths from the performance model (see Equation 1) for
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and P100. Superimposed are δ values of linear fits to the respective measurements
using Equation 2.

The P100 covers a large range of possible clock rates, with the maximal
values leading to bandwidths close to 300 GB/s. But also for frequencies below
875 MHz on which the K40 and K80 can operate on as well, the P100 surpasses
the older devices vastly. As already determined in Section 5.1, the pusher benefits
greatly from the increased memory bandwidth, and does so independently from
the clock rate. Additionally, the Pascal architecture increases the number of
multiprocessors over the previous Kepler systems; JuSPIC is capable of exploiting
this as well. In total, the dependence of the bandwidth on the graphics clock is
δ = 0.146 (GB/s)/(MHz)

The chips on K40 and on K80 are very similar, which can be seen in the values
for the largest clock frequencies – they are close to identical. The performance is
different for smaller clock rates: The bandwidth is reduced less for K80 devices.
The chip seems to operate more efficiently. A distinct feature is visible for
the K80: The distribution has two parts. For lower clock rates the effective
bandwidth increases faster (0.138 (GB/s)/(MHz)) than for higher clock rates
(0.037 (GB/s)/(MHz)). The kink in the curve marks the position where nearly
the highest computing performance is reached – for further increase in clock
rate only little performance is gained. The model parameter for the K40 is
0.106 (GB/s)/(MHz).
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Judging from the δ parameters, it can be seen that the P100 device not
only has the absolute best performance but also the largest increase in effective
bandwidth with each step in clock frequency.

6 Related Work

Various PIC codes have been ported to GPU. The PSC code, on which JuSPIC is
based, was later reimplemented in C and ported to GPUs [11]. More specifically,
the code has been ported to the Titan supercomputer at Oak Ridge National
Lab, a Cray XK7 system comprising just over 18 000 nodes with 1 GPU each.
The same system was used to demonstrate extreme scalability of the PIConGPU,
a PIC code specifically developed for GPU acceleration [9]. While PSC and
PIConGPU are full production codes, other efforts for GPU porting have been
performed using proof-of-concept codes [19,10,16].

As the Minksy platform is relatively new, not much work has been published
exploring the performance of scientific applications on this platform. Various
publications investigated the performance using the precursor platform where
NVDIA K40 or K80 GPUs where attached to POWER8 processors via a PCIe
GEN3 link. This included, e.g., evaluation of applications based on the Finite-
Difference Time-Domain (FDTD) method [4], based on the Density Function
Theory (DFT) method [5], or molecular dynamics simulations [20].

7 Summary and Conclusions

In this paper, we reported on our progress of accelerating the plasma physics
PIC code JuSPIC with GPU devices.

A heterogeneous approach of employed programming models is chosen. We use
OpenACC for data movement and simple kernels operating on three-dimensional
fields. OpenACC offers the ability of creating portable and backwards-compatible
code with only few annotating compiler directives.

For the most compute-intensive routine, the particle pusher, we use CUDA
Fortran since earlier versions of PGI’s OpenACC compiler were not able to
generate efficient code for the original data structures. Compatibility to systems
without GPUs is achieved by guarding the CUDA Fortran code with pre-processor
directives. For the CUDA Fortran kernel, we evaluate different data layouts. The
Structure-of-Array approach is fastest, providing best performance when moving
data between host and device and smallest kernel runtime. In the future we
want to implement pinned host data for this case, learning from the benefits of
Experiment 2.

In the process of analysing the individual stages of the CUDA Fortran part
we notice unexpected high runtimes for pre- and post-processing steps. In these
steps the linked list of particles is copied to and from simple Fortran fields (to
be processed on the GPU). Using a boiled-down benchmark we investigate this
peculiarity and determine the performance issue to be a malloc call which is
issued by the OpenMPI version shipped with the POWER version of the PGI
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compiler. Although we find workarounds, a possible mitigation is yet to be applied
to JuSPIC.

Moving on, we study the performance of the kernel of the pusher with different
number of particles in the scope of a simple information exchange model. Four
different GPU devices are investigated with the P100 of JURON providing by
far the best performance. The GPU provides an effective bandwidth of 285 GB/s
with its default clock setting. Subsequently, the performance model is adapted to
incorporate different GPU clock frequencies. The P100 provides the most efficient
scaling also in this case. An interesting additional investigation objective for the
future is the incorporation of energy measurements – which device takes the least
energy to come to a solution?

JuSPIC is a good fit for the new Pascal GPU architecture, benefiting well from
the increased memory bandwidth. Currently, only the part of the pusher is ported
to the GPU. We expect the performance gain from the GPU-accelerated version
to be significant, once also the reducer is ported to the GPU. The data movements
from and to the devices can be omitted in this case, reducing the overhead. Once
the single-node version is accelerated, a next step will be Multi-GPU usage
together with MPI. Currently, the OpenMP statements available in JuSPIC are
ignored for the GPU version, to solely focus on this part of the acceleration
and prevent race conditions. Once the GPU version is stable, we should ensure
leveraging all possibilities of potential parallelism and enable OpenMP again.

Not only the GPU version of JuSPIC is currently developed, the code itself
is progressing further. Different data layouts are being investigated to possibly
remove storing particle data in linked lists, simplifying coalesced data handling.
Effective load-balancing using space-filling curves is also currently studied.
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