
M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

GPU-Accelerated Particle-in-cell
Code on Minsky
IWOPH17, ISC, Frankfurt a. M.

Andreas Herten, Forschungszentrum Jülich, 22 July 2017

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Outline
About

About JSC
About Supercomputers

JuSPIC
Program Description
Steps

Acceleration for GPUs
OpenACC
CUDA Fortran
Data Layout Analysis
Data Layout Conversion

Performance Modelling
Effective Bandwidth
Clock Rates

Conclusions & Outlook

Contributions TL;DR
PiC Code to GPU (partly)
OpenACC, CUDA Fortran
Data layout benchmarks on
Minsky (POWER8NVL, P100)
Peculiarities with PGI
compiler on POWER
Performance Model

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 2 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Jülich Supercomputing Centre
Part of Forschungszentrum Jülich

Forschungszentrum Jülich
— One of Europe’s largest research centers (≈6000 employees)
— Energy, environmental sciences, health, information technology

Jülich Supercomputing Centre
— Two Top 500 supercomputers (JUQUEEN: #21, JURECA: #80)
— NVIDIA Application Lab
— POWER Acceleration and Design Centre

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 3 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Supercomputers Involved

JURON

Human Brain Project
prototype
18 nodes with IBM
POWER8NVL CPUs
(2× 10 cores)
Per Node: 4 NVIDIA
Tesla P100 cards,
connected via NVLink.
GPU: 0.38 PFLOP/s
peak performance
NVME

JURECA

General-purpose
supercomputer
1872 nodes with
Intel Xeon E5 CPUs
(2× 12 cores)
75 nodes with 2
NVIDIA Tesla K80 cards
1.8 (CPU) + 0.44 (GPU)
PFLOP/s peak
performance (#70)
EDR InfiniBand

JUHYDRA

GPU prototyping
machine
1 node with
Intel Xeon E5 CPU
(2× 8 cores)
NVIDIA 2× Tesla K20,
2× Tesla K40 cards
No batch system

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 4 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Supercomputers Involved

JURON

Human Brain Project
prototype
18 nodes with IBM
POWER8NVL CPUs
(2× 10 cores)
Per Node: 4 NVIDIA
Tesla P100 cards,
connected via NVLink.
GPU: 0.38 PFLOP/s
peak performance
NVME

JURECA

General-purpose
supercomputer
1872 nodes with
Intel Xeon E5 CPUs
(2× 12 cores)
75 nodes with 2
NVIDIA Tesla K80 cards
1.8 (CPU) + 0.44 (GPU)
PFLOP/s peak
performance (#70)
EDR InfiniBand

JUHYDRA

GPU prototyping
machine
1 node with
Intel Xeon E5 CPU
(2× 8 cores)
NVIDIA 2× Tesla K20,
2× Tesla K40 cards
No batch system

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 4 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Supercomputers Involved

JURON

Human Brain Project
prototype
18 nodes with IBM
POWER8NVL CPUs
(2× 10 cores)
Per Node: 4 NVIDIA
Tesla P100 cards,
connected via NVLink.
GPU: 0.38 PFLOP/s
peak performance
NVME

JURECA

General-purpose
supercomputer
1872 nodes with
Intel Xeon E5 CPUs
(2× 12 cores)
75 nodes with 2
NVIDIA Tesla K80 cards
1.8 (CPU) + 0.44 (GPU)
PFLOP/s peak
performance (#70)
EDR InfiniBand

JUHYDRA

GPU prototyping
machine
1 node with
Intel Xeon E5 CPU
(2× 8 cores)
NVIDIA 2× Tesla K20,
2× Tesla K40 cards
No batch system

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 4 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Supercomputers Involved

JURON

Human Brain Project
prototype
18 nodes with IBM
POWER8NVL CPUs
(2× 10 cores)
Per Node: 4 NVIDIA
Tesla P100 cards,
connected via NVLink.
GPU: 0.38 PFLOP/s
peak performance
NVME

JURECA

General-purpose
supercomputer
1872 nodes with
Intel Xeon E5 CPUs
(2× 12 cores)
75 nodes with 2
NVIDIA Tesla K80 cards
1.8 (CPU) + 0.44 (GPU)
PFLOP/s peak
performance (#70)
EDR InfiniBand

JUHYDRA

GPU prototyping
machine
1 node with
Intel Xeon E5 CPU
(2× 8 cores)
NVIDIA 2× Tesla K20,
2× Tesla K40 cards
No batch system

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 4 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Supercomputers Involved

JURON

Human Brain Project
prototype
18 nodes with IBM
POWER8NVL CPUs
(2× 10 cores)
Per Node: 4 NVIDIA
Tesla P100 cards,
connected via NVLink.
GPU: 0.38 PFLOP/s
peak performance
NVME

JURECA

General-purpose
supercomputer
1872 nodes with
Intel Xeon E5 CPUs
(2× 12 cores)
75 nodes with 2
NVIDIA Tesla K80 cards
1.8 (CPU) + 0.44 (GPU)
PFLOP/s peak
performance (#70)
EDR InfiniBand

JUHYDRA

GPU prototyping
machine
1 node with
Intel Xeon E5 CPU
(2× 8 cores)
NVIDIA 2× Tesla K20,
2× Tesla K40 cards
No batch system

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 4 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

JuSPIC

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 5 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

JuSPIC
A scalable Particle-in-Cell plasma physics code

Based on PSC by H. Ruhl
Laser-plasma interaction
3D electromagnetic PiC code
Finite-Difference
Time-Domain scheme
Cartesian geometry, arbitrary
number of particle species
Scales to full Blue Gene/Q
system JUQUEEN

Modern Fortran, Open Source
Distributed withMPI in tiles
CPU-parallelized with
OpenMP

A B A B A B

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 6 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

JuSPIC
A scalable Particle-in-Cell plasma physics code

Based on PSC by H. Ruhl
Laser-plasma interaction
3D electromagnetic PiC code
Finite-Difference
Time-Domain scheme
Cartesian geometry, arbitrary
number of particle species
Scales to full Blue Gene/Q
system JUQUEEN

Modern Fortran, Open Source
Distributed withMPI in tiles
CPU-parallelized with
OpenMP

A B A B A B

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 6 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Sample Simulation
Visualizing different quantities

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 7 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Sample Simulation
Visualizing different quantities

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 7 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Steps of Algorithm

Init

E Com B Com

Field Solver
t → t + 1/2

Pusher Reducer Com

Particle & Density Update

E Com B Com

Field Solver
t + 1/2 → t + 1

I/O

E , B Already on GPUwith OpenACC (small kernels)
Pusher Focus of this paper
Reducer Future step

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 8 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Steps of Algorithm

Init

E Com B Com

Field Solver
t → t + 1/2

Pusher Reducer Com

Particle & Density Update

E Com B Com

Field Solver
t + 1/2 → t + 1

I/O

E , B Already on GPUwith OpenACC (small kernels)
Pusher Focus of this paper
Reducer Future step

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 8 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Steps of Algorithm

Init

E Com B Com

Field Solver
t → t + 1/2

Pusher Reducer Com

Particle & Density Update

E Com B Com

Field Solver
t + 1/2 → t + 1

I/O

E , B Already on GPUwith OpenACC (small kernels)
Pusher Focus of this paper
Reducer Future step

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 8 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Steps of Algorithm

Init

E Com B Com

Field Solver
t → t + 1/2

Pusher Reducer Com

Particle & Density Update

E Com B Com

Field Solver
t + 1/2 → t + 1

I/O

E , B Already on GPUwith OpenACC (small kernels)
Pusher Focus of this paper
Reducer Future step

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 8 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Steps of Algorithm

Init

E Com B Com

Field Solver
t → t + 1/2

Pusher Reducer Com

Particle & Density Update

E Com B Com

Field Solver
t + 1/2 → t + 1

I/O

E , B Already on GPUwith OpenACC (small kernels)
Pusher Focus of this paper
Reducer Future step

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 8 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Acceleration for GPUs

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 9 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Acceleration for GPUs
OpenACC

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 10 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC in JuSPIC
A long story

Field solvers use OpenACC (simple code)

!$acc kernels loop collapse(3) present(e,b,ji)
do i3=i3mn-1,i3mx+1

do i2=i2mn-1,i2mx+1
do i1=i1mn-1,i1mx+1

e(i1,i2,i3)%X=e(i1,i2,i3)%X
! etc

Data movement with OpenACC (incl. resident parts)

But Pusher no easy feat

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 11 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC Pusher
Complicated structures

At start of porting: Pusher kernel too complicated for parsing by
compiler
— Large routine (many registers)
— Operations on whole fields (it’s Fortran after all)
— Structured data types (with alloctables)

Long investigation to get runnable code
Good performance complicated
Reported in other publication (beyond scope here, appendix)

→ Use CUDA Fortran

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 12 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC Pusher
Complicated structures

At start of porting: Pusher kernel too complicated for parsing by
compiler
— Large routine (many registers)
— Operations on whole fields (it’s Fortran after all)
— Structured data types (with alloctables)

Long investigation to get runnable code
Good performance complicated
Reported in other publication (beyond scope here, appendix)

→ Use CUDA Fortran

M
it

g
lie

d
 d

e
r

H
e

lm
h

o
lt

z-
G

e
m

e
in

sc
h

af
t

Performance Model

Status of Porting and Acceleration

JuSPIC

Conclusion & Outlook

• Based on plasma simulation code PSC (by H. Ruhl)

• 3D electromagnetic Particle-in-Cell code

• Solves relativistic Vlasov equation, coupled to
Maxwell equations in
finite-difference time-
domain scheme

• Cartesian geometry;
arbitrary number of
particle species

Andreas Herten, Dirk Pleiter, Dirk Brömmel
Jülich Supercomputing Centre

Accelerating Plasma Physics with GPUs

Jülich Scalable Particle-in-Cell Code TechniquesWorkflow

Particle Pusher

Conclusion
• First progress made in GPU-acceleration of JuSPIC

• Hybrid code: OpenACC and CUDA Fortran

• Changes in data layout necessary (expensive!)

• Benefit from P100 architecture

OpenACC and Fortran

• Support through PGI compiler

• Well-supported, example:

!$acc parallel loop
private(pp,root,qi,mi,wi)
present(e,b)

do i=1, n

 ! …

end do

!$acc end parallel

• JuSPIC: Many issues during
parallelization

• Structured datatypes and array
operations challenging for compiler

→ Many manual code adaptions

• Why not use CUDA Fortran?

• Portable with preprocessor guards!

#ifdef _CUDA

i = blockDim%x * blockIdx%x +
threadIdx%x

#else

do i=0,N

#endif

! …

Outlook
• Reduction on GPU

• Minimization of host/devices copies

• Lowering of overhead of data layout transformations

• Evaluate data layout change for rest of JuSPIC

• Parallelization on slice / tile level

• Parallelization on multiple GPUs

JuSPIC with OpenACC and CUDA Fortran

• Modern Fortran

• Fully distributed with MPI
– Domain decomposition: tiles

• CPU-parallelized with OpenMP
– Local decomposition: slices

– A, B processed independently

• Scales to full JUQUEEN
supercomputer

Three parts:
• Solve Maxwell equations with OpenACC (not shown here)
• Update of particle position & momentum (pusher)
• Update of densities (reduction) GPU

GPU

CPU Version
• Single core (OpenMP

disabled)
• Original data structure

(linked list) temporarily
moved to array
→ overhead

Initial OpenACC Port
!$acc parallel loop private(pp,root,qi,mi,wi)
present(e,b) copy(list_of_particles)

• Not running!
• Breaks at first encounter

Working OpenACC Port
x_(1)=list_of_particles(i_particle)%vec(1)
x_(2)=list_of_particles(i_particle)%vec(2)

• Two changes necessary
– Unroll some array

operations
– Limit number of

gang/vector (slow!)
→ Fortran programming

style and complex kernel
challenging for OpenACC
compiler

Fast OpenACC
• Rewrite of entire computing kernel

necessary!
• Few Fortran features used (arrays…)

CUDA Fortran
call gpupusher<<<dim3(nBlocks, 1, 1), dim3(nThreads, 1, 1)>>>(...)

• Translation to CUDA Fortran kernel
• Helper data (scalars, 3D vectors)

handled by OpenACC
• Particle pos., mom. via CUDA
• GPU-compatible through

preprocessor guards

CUDA Fortran + OpenACC
!$acc enter data copyin(list_of_particles, xyzl,
di, dqs, one1, one2, lbounds, ubounds)
!$acc host_data use_device(list_of_particles, e, b,
xyzl, di, dqs, one1, one2, lbounds, ubounds)

• All data (incl. large arrays)
handled by OpenACC

• Few code changes
necessarry

FUDA + Pinned OpenACC
type(particle_type), dimension(:), allocatable ::
list_of_particles
attributes(pinned) :: list_of_particles

• Pinned host data
• Faster data staging

CUDA Fortran, SoA
type :: posmom
 real, dimension(:), allocatable :: x, y, z, px, …
end type posmom
type(posmom) :: soa_list_of_particles
real, dimension(:), allocatable, device :: d_x, …

• Structure-of-Array data
type for coalesced
memory access

• Allocated once, resized
dynamically

• Speedup single CPU: 24×

Based on information exchange: t(NPart) = α + I(NPart)/β

Speedup:

Kernel (only compute) w/r/t CPU loop (single core)
Full pusher (incl. all overhead) w/r/t initial OpenACC

GPU

 Nvidia Tesla
K40

ECC on

CPU

Intel Xeon E5-
2650 (2 GHz)

Sandy Bridge

GPU

GPU

Status of
Acceleration

GPU

Effective bandwidths vs. clock frequencies for K40, K80, P100

Kernel duration vs. information exchange

• Information exchanged for kernel

→ Is lower limit of exploited bandwidth

• Effective bandwidth: K80 – 100 GB/s; P100 – 317 GB/s

• GPU kernel possibly latency-limited (many registers)

• K80: Two regions (left: performance depending on

clock; right: nearly constant)

• P100: JuSPIC benefits from new GPU design

Clock fixed to
max. value

GPU

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 12 31

http://www.gputechconf.com/resources/poster-gallery/2017/hpc-and-supercomputing

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC Pusher
Complicated structures

At start of porting: Pusher kernel too complicated for parsing by
compiler
— Large routine (many registers)
— Operations on whole fields (it’s Fortran after all)
— Structured data types (with alloctables)

Long investigation to get runnable code
Good performance complicated
Reported in other publication (beyond scope here, appendix)

→ Use CUDA Fortran

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 12 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Acceleration for GPUs
CUDA Fortran

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 13 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Introduction to CUDA Fortran
It’s like CUDA C/C++,… but for Fortran

Available in PGI Fortran compiler
Adds CUDA extensions to Fortran

Examples (from JuSPIC):

— Define device function along-side host function
type(particle_type), dimension(slice(1)%n) ::

list_of_particles, list_of_particles_d↪→

attributes(device) :: list_of_particles_d

— Copy to device
list_of_particles_d = list_of_particles

— Define kernel
attributes(global) subroutine gpupusher(list_of_particles, ...)

— Call kernel
call gpupusher<<<dim3(nBlocks, 1, 1), dim3(nThreads, 1,

1)>>>(list_of_particles_d, ...)↪→

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 14 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Introduction to CUDA Fortran
It’s like CUDA C/C++,… but for Fortran

Available in PGI Fortran compiler
Adds CUDA extensions to Fortran
Examples (from JuSPIC):

— Define device function along-side host function
type(particle_type), dimension(slice(1)%n) ::

list_of_particles, list_of_particles_d↪→

attributes(device) :: list_of_particles_d

— Copy to device
list_of_particles_d = list_of_particles

— Define kernel
attributes(global) subroutine gpupusher(list_of_particles, ...)

— Call kernel
call gpupusher<<<dim3(nBlocks, 1, 1), dim3(nThreads, 1,

1)>>>(list_of_particles_d, ...)↪→

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 14 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Introduction to CUDA Fortran
It’s like CUDA C/C++,… but for Fortran

Available in PGI Fortran compiler
Adds CUDA extensions to Fortran
Examples (from JuSPIC):
— Define device function along-side host function

type(particle_type), dimension(slice(1)%n) ::
list_of_particles, list_of_particles_d↪→

attributes(device) :: list_of_particles_d

— Copy to device
list_of_particles_d = list_of_particles

— Define kernel
attributes(global) subroutine gpupusher(list_of_particles, ...)

— Call kernel
call gpupusher<<<dim3(nBlocks, 1, 1), dim3(nThreads, 1,

1)>>>(list_of_particles_d, ...)↪→

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 14 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Introduction to CUDA Fortran
It’s like CUDA C/C++,… but for Fortran

Available in PGI Fortran compiler
Adds CUDA extensions to Fortran
Examples (from JuSPIC):
— Define device function along-side host function

type(particle_type), dimension(slice(1)%n) ::
list_of_particles, list_of_particles_d↪→

attributes(device) :: list_of_particles_d

— Copy to device
list_of_particles_d = list_of_particles

— Define kernel
attributes(global) subroutine gpupusher(list_of_particles, ...)

— Call kernel
call gpupusher<<<dim3(nBlocks, 1, 1), dim3(nThreads, 1,

1)>>>(list_of_particles_d, ...)↪→

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 14 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Introduction to CUDA Fortran
It’s like CUDA C/C++,… but for Fortran

Available in PGI Fortran compiler
Adds CUDA extensions to Fortran
Examples (from JuSPIC):
— Define device function along-side host function

type(particle_type), dimension(slice(1)%n) ::
list_of_particles, list_of_particles_d↪→

attributes(device) :: list_of_particles_d

— Copy to device
list_of_particles_d = list_of_particles

— Define kernel
attributes(global) subroutine gpupusher(list_of_particles, ...)

— Call kernel
call gpupusher<<<dim3(nBlocks, 1, 1), dim3(nThreads, 1,

1)>>>(list_of_particles_d, ...)↪→

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 14 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Introduction to CUDA Fortran
It’s like CUDA C/C++,… but for Fortran

Available in PGI Fortran compiler
Adds CUDA extensions to Fortran
Examples (from JuSPIC):
— Define device function along-side host function

type(particle_type), dimension(slice(1)%n) ::
list_of_particles, list_of_particles_d↪→

attributes(device) :: list_of_particles_d

— Copy to device
list_of_particles_d = list_of_particles

— Define kernel
attributes(global) subroutine gpupusher(list_of_particles, ...)

— Call kernel
call gpupusher<<<dim3(nBlocks, 1, 1), dim3(nThreads, 1,

1)>>>(list_of_particles_d, ...)↪→

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 14 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Fortran Portability
Not as portable as OpenACC, but it’s alright

CUDA Fortran: more powerful approach
Portability suffers…

…but can bemitigated!
1 Use OpenACC as much as possible, e.g. for data movements

OpenACCmixes well together with CUDA Fortran

!$acc enter data copyin(list_of_particles, ...)

2 Use pre-processor directives for rest

#ifdef _CUDA
i = blockDim%x * (blockIdx%x - 1) + threadIdx%x

#else
do i = lbound(a, 1), ubound(a, 1)

#endif

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 15 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Fortran Portability
Not as portable as OpenACC, but it’s alright

CUDA Fortran: more powerful approach
Portability suffers…
…but can bemitigated!
1 Use OpenACC as much as possible, e.g. for data movements

OpenACCmixes well together with CUDA Fortran

!$acc enter data copyin(list_of_particles, ...)

2 Use pre-processor directives for rest

#ifdef _CUDA
i = blockDim%x * (blockIdx%x - 1) + threadIdx%x

#else
do i = lbound(a, 1), ubound(a, 1)

#endif

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 15 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CUDA Fortran Portability
Not as portable as OpenACC, but it’s alright

CUDA Fortran: more powerful approach
Portability suffers…
…but can bemitigated!
1 Use OpenACC as much as possible, e.g. for data movements

OpenACCmixes well together with CUDA Fortran

!$acc enter data copyin(list_of_particles, ...)

2 Use pre-processor directives for rest

#ifdef _CUDA
i = blockDim%x * (blockIdx%x - 1) + threadIdx%x

#else
do i = lbound(a, 1), ubound(a, 1)

#endif

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 15 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Acceleration for GPUs
Data Layout Analysis

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 16 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Strategies for Data Layout
Because data is not solely data

Benchmark different data layouts and transfer strategies
Sub-parts of Pusher:∑

Everything
Allocate Allocate host-side

data structures
LL2F Convert linked-list

data structure to field
H2D Copy data from host

to device

Kernel Run kernel
D2H Copy data from

device to host
Other Left-over time

(synchronization, etc.)
F2LL Copy flat field back to

linked list

Benchmarking on JURON

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 17 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Description of experiments

Initial All particles stored in single field, one particle after another; data
copied to/from GPUwith Fortran (baseline)

Exp 1 As Initial, but data copied with OpenACC copy directives
Exp 2 As Exp 1, but data copied from pinned host memory
SoA Data copied with Fortran, but instead of one field with all particle

data, one field for each spatial andmomentum component for
particles

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

Initial 8040 – 567 82 84 62 350 6885
Exp 1 10435 – 353 80 82 91 380 9440
Exp 2 9695 564 527 79 83 72 108 7973
SoA 7811 1 844 66 77 53 376 6386

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 18 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Description of experiments

Initial All particles stored in single field, one particle after another; data
copied to/from GPUwith Fortran (baseline)

Exp 1 As Initial, but data copied with OpenACC copy directives
Exp 2 As Exp 1, but data copied from pinned host memory
SoA Data copied with Fortran, but instead of one field with all particle

data, one field for each spatial andmomentum component for
particles

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

Initial 8040 – 567 82 84 62 350 6885

Exp 1 10435 – 353 80 82 91 380 9440
Exp 2 9695 564 527 79 83 72 108 7973
SoA 7811 1 844 66 77 53 376 6386

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 18 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Description of experiments

Initial All particles stored in single field, one particle after another; data
copied to/from GPUwith Fortran (baseline)

Exp 1 As Initial, but data copied with OpenACC copy directives

Exp 2 As Exp 1, but data copied from pinned host memory
SoA Data copied with Fortran, but instead of one field with all particle

data, one field for each spatial andmomentum component for
particles

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

Initial 8040 – 567 82 84 62 350 6885
Exp 1 10435 – 353 80 82 91 380 9440

Exp 2 9695 564 527 79 83 72 108 7973
SoA 7811 1 844 66 77 53 376 6386

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 18 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Description of experiments

Initial All particles stored in single field, one particle after another; data
copied to/from GPUwith Fortran (baseline)

Exp 1 As Initial, but data copied with OpenACC copy directives
Exp 2 As Exp 1, but data copied from pinned host memory

SoA Data copied with Fortran, but instead of one field with all particle
data, one field for each spatial andmomentum component for
particles

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

Initial 8040 – 567 82 84 62 350 6885
Exp 1 10435 – 353 80 82 91 380 9440
Exp 2 9695 564 527 79 83 72 108 7973

SoA 7811 1 844 66 77 53 376 6386

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 18 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Description of experiments

Initial All particles stored in single field, one particle after another; data
copied to/from GPUwith Fortran (baseline)

Exp 1 As Initial, but data copied with OpenACC copy directives
Exp 2 As Exp 1, but data copied from pinned host memory
SoA Data copied with Fortran, but instead of one field with all particle

data, one field for each spatial andmomentum component for
particles

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

Initial 8040 – 567 82 84 62 350 6885
Exp 1 10435 – 353 80 82 91 380 9440
Exp 2 9695 564 527 79 83 72 108 7973
SoA 7811 1 844 66 77 53 376 6386

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 18 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Discussion of results

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

Initial 8040 – 567 82 84 62 350 6885
Exp 1 10435 – 353 80 82 91 380 9440
Exp 2 9695 564 527 79 83 72 108 7973
SoA 7811 1 844 66 77 53 376 6386

SoA: fastest, looking (also) at raw GPU runtimes

– but slowest for
change of data structures (six fields vs. one)

Exp 2: least overhead; pinnedmemory allows for direct data
access

– but allocation overhead is not fully resolved

Exp 1: also ok for raw GPU times, but large F2LL overhead (more
on that later)

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 19 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Discussion of results

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

Initial 8040 – 567 82 84 62 350 6885
Exp 1 10435 – 353 80 82 91 380 9440
Exp 2 9695 564 527 79 83 72 108 7973
SoA 7811 1 844 66 77 53 376 6386

SoA: fastest, looking (also) at raw GPU runtimes

– but slowest for
change of data structures (six fields vs. one)
Exp 2: least overhead; pinnedmemory allows for direct data
access

– but allocation overhead is not fully resolved

Exp 1: also ok for raw GPU times, but large F2LL overhead (more
on that later)

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 19 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Discussion of results

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

Initial 8040 – 567 82 84 62 350 6885
Exp 1 10435 – 353 80 82 91 380 9440
Exp 2 9695 564 527 79 83 72 108 7973
SoA 7811 1 844 66 77 53 376 6386

SoA: fastest, looking (also) at raw GPU runtimes – but slowest for
change of data structures (six fields vs. one)

Exp 2: least overhead; pinnedmemory allows for direct data
access

– but allocation overhead is not fully resolved

Exp 1: also ok for raw GPU times, but large F2LL overhead (more
on that later)

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 19 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Discussion of results

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

Initial 8040 – 567 82 84 62 350 6885
Exp 1 10435 – 353 80 82 91 380 9440
Exp 2 9695 564 527 79 83 72 108 7973
SoA 7811 1 844 66 77 53 376 6386

SoA: fastest, looking (also) at raw GPU runtimes – but slowest for
change of data structures (six fields vs. one)
Exp 2: least overhead; pinnedmemory allows for direct data
access

– but allocation overhead is not fully resolved
Exp 1: also ok for raw GPU times, but large F2LL overhead (more
on that later)

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 19 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Discussion of results

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

Initial 8040 – 567 82 84 62 350 6885
Exp 1 10435 – 353 80 82 91 380 9440
Exp 2 9695 564 527 79 83 72 108 7973
SoA 7811 1 844 66 77 53 376 6386

SoA: fastest, looking (also) at raw GPU runtimes – but slowest for
change of data structures (six fields vs. one)
Exp 2: least overhead; pinnedmemory allows for direct data
access – but allocation overhead is not fully resolved

Exp 1: also ok for raw GPU times, but large F2LL overhead (more
on that later)

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 19 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Discussion of results

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

Initial 8040 – 567 82 84 62 350 6885
Exp 1 10435 – 353 80 82 91 380 9440
Exp 2 9695 564 527 79 83 72 108 7973
SoA 7811 1 844 66 77 53 376 6386

SoA: fastest, looking (also) at raw GPU runtimes – but slowest for
change of data structures (six fields vs. one)
Exp 2: least overhead; pinnedmemory allows for direct data
access – but allocation overhead is not fully resolved
Exp 1: also ok for raw GPU times, but large F2LL overhead (more
on that later)

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 19 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Architecture Comparison

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

JURON

Initial 8040 – 567 82 84 62 350 6885
Exp 1 10435 – 353 80 82 91 380 9440
Exp 2 9695 564 527 79 83 72 108 7973
SoA 7811 1 844 66 77 53 376 6386

JUHYDRA

Initial 4956 – 908 267 229 208 736 2600
Exp 1 4687 – 764 232 229 198 804 2455
Exp 2 5328 577 1027 224 230 192 23 2651
SoA 4880 1 786 204 208 173 827 2674

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 20 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Architecture Comparison

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

JURON

Initial 8040 – 567 82 84 62 350 6885
Exp 1 10435 – 353 80 82 91 380 9440
Exp 2 9695 564 527 79 83 72 108 7973
SoA 7811 1 844 66 77 53 376 6386

JUHYDRA

Initial 4956 – 908 267 229 208 736 2600
Exp 1 4687 – 764 232 229 198 804 2455
Exp 2 5328 577 1027 224 230 192 23 2651
SoA 4880 1 786 204 208 173 827 2674

2.8×

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 20 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Architecture Comparison

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

JURON

Initial 8040 – 567 82 84 62 350 6885
Exp 1 10435 – 353 80 82 91 380 9440
Exp 2 9695 564 527 79 83 72 108 7973
SoA 7811 1 844 66 77 53 376 6386

JUHYDRA

Initial 4956 – 908 267 229 208 736 2600
Exp 1 4687 – 764 232 229 198 804 2455
Exp 2 5328 577 1027 224 230 192 23 2651
SoA 4880 1 786 204 208 173 827 2674

2.8×

3.2×

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 20 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Architecture Comparison

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

JURON

Initial 8040 – 567 82 84 62 350 6885
Exp 1 10435 – 353 80 82 91 380 9440
Exp 2 9695 564 527 79 83 72 108 7973
SoA 7811 1 844 66 77 53 376 6386

JUHYDRA

Initial 4956 – 908 267 229 208 736 2600
Exp 1 4687 – 764 232 229 198 804 2455
Exp 2 5328 577 1027 224 230 192 23 2651
SoA 4880 1 786 204 208 173 827 2674

2.8×

3.2×

0.6×

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 20 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Architecture Comparison

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

JURON

Initial 8040 – 567 82 84 62 350 6885
Exp 1 10435 – 353 80 82 91 380 9440
Exp 2 9695 564 527 79 83 72 108 7973
SoA 7811 1 844 66 77 53 376 6386

JUHYDRA

Initial 4956 – 908 267 229 208 736 2600
Exp 1 4687 – 764 232 229 198 804 2455
Exp 2 5328 577 1027 224 230 192 23 2651
SoA 4880 1 786 204 208 173 827 2674

2.8×

3.2×

0.6×

0.3×

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 20 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Data Layout Experiments
Architecture Comparison

in μs
∑

Allocate LL2F H2D Kernel D2H Others F2LL

JURON

Initial 8040 – 567 82 84 62 350 6885
Exp 1 10435 – 353 80 82 91 380 9440
Exp 2 9695 564 527 79 83 72 108 7973
SoA 7811 1 844 66 77 53 376 6386

JUHYDRA

Initial 4956 – 908 267 229 208 736 2600
Exp 1 4687 – 764 232 229 198 804 2455
Exp 2 5328 577 1027 224 230 192 23 2651
SoA 4880 1 786 204 208 173 827 2674

2.8×

3.2×

0.6×

0.3×

Why!?

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 20 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Acceleration for GPUs
Data Layout Conversion

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 21 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Conversion of Data Layouts
Why is F2LL so slow?

Parts of F2LL
— Kill old linked list of particles1
— Initialize new, empty linked list of particles
— Loop through field(s) of particle information…
— …add each particle to linked list, update pointers

add_one_to_list
allocate(list%tail%next)
nullify(list%tail%next%next)
list%tail%next%particle = particle
list%tail => list%tail%next

⇒ Benchmark

1Start with first particle, progress along links, remove each particle
Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 22 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Conversion of Data Layouts
Why is F2LL so slow?

Parts of F2LL
— Kill old linked list of particles1
— Initialize new, empty linked list of particles
— Loop through field(s) of particle information…
— …add each particle to linked list, update pointers

add_one_to_list
allocate(list%tail%next)
nullify(list%tail%next%next)
list%tail%next%particle = particle
list%tail => list%tail%next

⇒ Benchmark

1Start with first particle, progress along links, remove each particle
Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 22 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Conversion of Data Layouts
Why is F2LL so slow?

Parts of F2LL
— Kill old linked list of particles1
— Initialize new, empty linked list of particles
— Loop through field(s) of particle information…
— …add each particle to linked list, update pointers

add_one_to_list
allocate(list%tail%next)
nullify(list%tail%next%next)
list%tail%next%particle = particle
list%tail => list%tail%next

⇒ Benchmark

1Start with first particle, progress along links, remove each particle
Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 22 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Compiler/MPI Timings

10
00

00

10
00

00
0

25
00

00
0

50
00

00
0

75
00

00
0

10
00

00
00

25
00

00
00

50
00

00
00

75
00

00
00

10
00

00
00

0

Number of Particles

0.0

0.5

1.0

1.5

2.0

2.5

Ru
nt

im
e

pe
r P

ar
tic

le
 /

 s

1e 7 Normalized Runtimes on different Hosts

JUHYDRA, GCC
JUHYDRA, PGI
JUHYDRA, PGIMPI

JURECA, GCC
JURECA, PGI
JURECA, PGIMPI

JURON, GCC
JURON, GCCMPI
JURON, PGI

JURON, PGIMPI
JURON, XLF

10
00

00

10
00

00
0

25
00

00
0

50
00

00
0

75
00

00
0

10
00

00
00

25
00

00
00

50
00

00
00

75
00

00
00

10
00

00
00

0

Number of Particles

0.0

0.5

1.0

1.5

2.0

2.5

Ru
nt

im
e

pe
r P

ar
tic

le
 /

 s

1e 7 Normalized Runtimes on different Hosts

JUHYDRA, GCC
JUHYDRA, PGI
JUHYDRA, PGIMPI

JURECA, GCC
JURECA, PGI
JURECA, PGIMPI

JURON, GCC
JURON, GCCMPI
JURON, PGI

JURON, PGIMPI
JURON, XLF

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 23 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Compiler/MPI Timings

10
00

00

10
00

00
0

25
00

00
0

50
00

00
0

75
00

00
0

10
00

00
00

25
00

00
00

50
00

00
00

75
00

00
00

10
00

00
00

0

Number of Particles

0.0

0.5

1.0

1.5

2.0

2.5

Ru
nt

im
e

pe
r P

ar
tic

le
 /

 s

1e 7 Normalized Runtimes on different Hosts

JUHYDRA, GCC
JUHYDRA, PGI
JUHYDRA, PGIMPI

JURECA, GCC
JURECA, PGI
JURECA, PGIMPI

JURON, GCC
JURON, GCCMPI
JURON, PGI

JURON, PGIMPI
JURON, XLF

10
00

00

10
00

00
0

25
00

00
0

50
00

00
0

75
00

00
0

10
00

00
00

25
00

00
00

50
00

00
00

75
00

00
00

10
00

00
00

0

Number of Particles

0.0

0.5

1.0

1.5

2.0

2.5

Ru
nt

im
e

pe
r P

ar
tic

le
 /

 s

1e 7 Normalized Runtimes on different Hosts

JUHYDRA, GCC
JUHYDRA, PGI
JUHYDRA, PGIMPI

JURECA, GCC
JURECA, PGI
JURECA, PGIMPI

JURON, GCC
JURON, GCCMPI
JURON, PGI

JURON, PGIMPI
JURON, XLF

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 23 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Compiler/MPI Timings

10
00

00

10
00

00
0

25
00

00
0

50
00

00
0

75
00

00
0

10
00

00
00

25
00

00
00

50
00

00
00

75
00

00
00

10
00

00
00

0

Number of Particles

0.0

0.5

1.0

1.5

2.0

2.5

Ru
nt

im
e

pe
r P

ar
tic

le
 /

 s

1e 7 Normalized Runtimes on different Hosts

JUHYDRA, GCC
JUHYDRA, PGI
JUHYDRA, PGIMPI

JURECA, GCC
JURECA, PGI
JURECA, PGIMPI

JURON, GCC
JURON, GCCMPI
JURON, PGI

JURON, PGIMPI
JURON, XLF

10
00

00

10
00

00
0

25
00

00
0

50
00

00
0

75
00

00
0

10
00

00
00

25
00

00
00

50
00

00
00

75
00

00
00

10
00

00
00

0

Number of Particles

0.0

0.5

1.0

1.5

2.0

2.5

Ru
nt

im
e

pe
r P

ar
tic

le
 /

 s

1e 7 Normalized Runtimes on different Hosts

JUHYDRA, GCC
JUHYDRA, PGI
JUHYDRA, PGIMPI

JURECA, GCC
JURECA, PGI
JURECA, PGIMPI

JURON, GCC
JURON, GCCMPI
JURON, PGI

JURON, PGIMPI
JURON, XLF

x86 PGI

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 23 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Compiler/MPI Timings

10
00

00

10
00

00
0

25
00

00
0

50
00

00
0

75
00

00
0

10
00

00
00

25
00

00
00

50
00

00
00

75
00

00
00

10
00

00
00

0

Number of Particles

0.0

0.5

1.0

1.5

2.0

2.5

Ru
nt

im
e

pe
r P

ar
tic

le
 /

 s

1e 7 Normalized Runtimes on different Hosts

JUHYDRA, GCC
JUHYDRA, PGI
JUHYDRA, PGIMPI

JURECA, GCC
JURECA, PGI
JURECA, PGIMPI

JURON, GCC
JURON, GCCMPI
JURON, PGI

JURON, PGIMPI
JURON, XLF

10
00

00

10
00

00
0

25
00

00
0

50
00

00
0

75
00

00
0

10
00

00
00

25
00

00
00

50
00

00
00

75
00

00
00

10
00

00
00

0

Number of Particles

0.0

0.5

1.0

1.5

2.0

2.5

Ru
nt

im
e

pe
r P

ar
tic

le
 /

 s

1e 7 Normalized Runtimes on different Hosts

JUHYDRA, GCC
JUHYDRA, PGI
JUHYDRA, PGIMPI

JURECA, GCC
JURECA, PGI
JURECA, PGIMPI

JURON, GCC
JURON, GCCMPI
JURON, PGI

JURON, PGIMPI
JURON, XLF

x86 PGI

POWER PGI

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 23 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Compiler/MPI Timings

10
00

00

10
00

00
0

25
00

00
0

50
00

00
0

75
00

00
0

10
00

00
00

25
00

00
00

50
00

00
00

75
00

00
00

10
00

00
00

0

Number of Particles

0.0

0.5

1.0

1.5

2.0

2.5

Ru
nt

im
e

pe
r P

ar
tic

le
 /

 s

1e 7 Normalized Runtimes on different Hosts

JUHYDRA, GCC
JUHYDRA, PGI
JUHYDRA, PGIMPI

JURECA, GCC
JURECA, PGI
JURECA, PGIMPI

JURON, GCC
JURON, GCCMPI
JURON, PGI

JURON, PGIMPI
JURON, XLF

10
00

00

10
00

00
0

25
00

00
0

50
00

00
0

75
00

00
0

10
00

00
00

25
00

00
00

50
00

00
00

75
00

00
00

10
00

00
00

0

Number of Particles

0.0

0.5

1.0

1.5

2.0

2.5

Ru
nt

im
e

pe
r P

ar
tic

le
 /

 s

1e 7 Normalized Runtimes on different Hosts

JUHYDRA, GCC
JUHYDRA, PGI
JUHYDRA, PGIMPI

JURECA, GCC
JURECA, PGI
JURECA, PGIMPI

JURON, GCC
JURON, GCCMPI
JURON, PGI

JURON, PGIMPI
JURON, XLF

x86 PGI

POWER PGI

POWER PGI/MPI

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 23 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Compiler Investigation
IsMPI Slow? And, by the way, which MPI!?

PGIMPI: MPI version shipped with PGI
Not actively used in GPU version of JuSPIC, but in future

add_one_to_list benchmark does not use MPI at all!
Replacing pgfortran by mpifort leads to performance decrease

→ Benchmark compilers – with PAPI [3] instrumentation

System JURON JUHYDRA
Compiler GCC GCCMPI PGI PGIMPI PGIMPI* XLF PGI PGIMPI

Time pP/ns 36 37 46 154 48 41 32 32
Instructions pP 121 121 243 462 243 121 210 210

See appendix for somemore counters

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 24 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Compiler Investigation
IsMPI Slow? And, by the way, which MPI!?

PGIMPI: MPI version shipped with PGI
Not actively used in GPU version of JuSPIC, but in future
add_one_to_list benchmark does not use MPI at all!
Replacing pgfortran by mpifort leads to performance decrease

→ Benchmark compilers – with PAPI [3] instrumentation

System JURON JUHYDRA
Compiler GCC GCCMPI PGI PGIMPI PGIMPI* XLF PGI PGIMPI

Time pP/ns 36 37 46 154 48 41 32 32
Instructions pP 121 121 243 462 243 121 210 210

See appendix for somemore counters

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 24 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Compiler Investigation
IsMPI Slow? And, by the way, which MPI!?

PGIMPI: MPI version shipped with PGI
Not actively used in GPU version of JuSPIC, but in future
add_one_to_list benchmark does not use MPI at all!
Replacing pgfortran by mpifort leads to performance decrease

→ Benchmark compilers – with PAPI [3] instrumentation

System JURON JUHYDRA
Compiler GCC GCCMPI PGI PGIMPI PGIMPI* XLF PGI PGIMPI

Time pP/ns 36 37 46 154 48 41 32 32
Instructions pP 121 121 243 462 243 121 210 210

See appendix for somemore counters

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 24 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Compiler Investigation
IsMPI Slow? And, by the way, which MPI!?

PGIMPI: MPI version shipped with PGI
Not actively used in GPU version of JuSPIC, but in future
add_one_to_list benchmark does not use MPI at all!
Replacing pgfortran by mpifort leads to performance decrease

→ Benchmark compilers – with PAPI [3] instrumentation

System JURON JUHYDRA
Compiler GCC GCCMPI PGI PGIMPI PGIMPI* XLF PGI PGIMPI

Time pP/ns 36 37 46 154 48 41 32 32
Instructions pP 121 121 243 462 243 121 210 210

See appendix for somemore counters

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 24 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Further Investigation/Mitigation

MPI version shipped with PGI on POWER is slow, because it issues
many instructions

Further study: Identical assembly code generated as MPI-less
version…
…but includes call to malloc()!
Different libraries linked for PGI and PGIMPI cases!
LD_PRELOAD=/lib64/libc.so.6 solves problem!

⇒ Slow MPI-aware malloc()?
Mitigation
— Bug reported
— For now: consider as anomalous overhead

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 25 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Further Investigation/Mitigation

MPI version shipped with PGI on POWER is slow, because it issues
many instructions
Further study: Identical assembly code generated as MPI-less
version…

…but includes call to malloc()!
Different libraries linked for PGI and PGIMPI cases!
LD_PRELOAD=/lib64/libc.so.6 solves problem!

⇒ Slow MPI-aware malloc()?
Mitigation
— Bug reported
— For now: consider as anomalous overhead

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 25 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Further Investigation/Mitigation

MPI version shipped with PGI on POWER is slow, because it issues
many instructions
Further study: Identical assembly code generated as MPI-less
version…
…but includes call to malloc()!

Different libraries linked for PGI and PGIMPI cases!
LD_PRELOAD=/lib64/libc.so.6 solves problem!

⇒ Slow MPI-aware malloc()?
Mitigation
— Bug reported
— For now: consider as anomalous overhead

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 25 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Further Investigation/Mitigation

MPI version shipped with PGI on POWER is slow, because it issues
many instructions
Further study: Identical assembly code generated as MPI-less
version…
…but includes call to malloc()!
Different libraries linked for PGI and PGIMPI cases!

LD_PRELOAD=/lib64/libc.so.6 solves problem!
⇒ Slow MPI-aware malloc()?

Mitigation
— Bug reported
— For now: consider as anomalous overhead

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 25 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Further Investigation/Mitigation

MPI version shipped with PGI on POWER is slow, because it issues
many instructions
Further study: Identical assembly code generated as MPI-less
version…
…but includes call to malloc()!
Different libraries linked for PGI and PGIMPI cases!
LD_PRELOAD=/lib64/libc.so.6 solves problem!

⇒ Slow MPI-aware malloc()?
Mitigation
— Bug reported
— For now: consider as anomalous overhead

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 25 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Further Investigation/Mitigation

MPI version shipped with PGI on POWER is slow, because it issues
many instructions
Further study: Identical assembly code generated as MPI-less
version…
…but includes call to malloc()!
Different libraries linked for PGI and PGIMPI cases!
LD_PRELOAD=/lib64/libc.so.6 solves problem!

⇒ Slow MPI-aware malloc()?

Mitigation
— Bug reported
— For now: consider as anomalous overhead

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 25 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Further Investigation/Mitigation

MPI version shipped with PGI on POWER is slow, because it issues
many instructions
Further study: Identical assembly code generated as MPI-less
version…
…but includes call to malloc()!
Different libraries linked for PGI and PGIMPI cases!
LD_PRELOAD=/lib64/libc.so.6 solves problem!

⇒ Slow MPI-aware malloc()?
Mitigation
— Bug reported
— For now: consider as anomalous overhead

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 25 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Modelling

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 26 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Effective Bandwidth
Defining the model

Goal: Compare different GPU architectures; understand behavior
of JuSPIC
Model based on information exchanged of GPU kernel
— Amount of exchanged information for given number of particles
— Time for exchange

t(Npart) = α + I(Npart)/β ,

Npart Number of particles processed
I Information exchanged (572 B (read)+ 40 B (write))
t Kernel runtime

α, β Fit parameters; β: effective bandwidth

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 27 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Effective Bandwidth
Defining the model

Goal: Compare different GPU architectures; understand behavior
of JuSPIC
Model based on information exchanged of GPU kernel
— Amount of exchanged information for given number of particles
— Time for exchange

t(Npart) = α + I(Npart)/β ,

Npart Number of particles processed
I Information exchanged (572 B (read)+ 40 B (write))
t Kernel runtime

α, β Fit parameters; β: effective bandwidth

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 27 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Effective Bandwidth
Defining the model

Goal: Compare different GPU architectures; understand behavior
of JuSPIC
Model based on information exchanged of GPU kernel
— Amount of exchanged information for given number of particles
— Time for exchange

t(Npart) = α + I(Npart)/β ,

Npart Number of particles processed
I Information exchanged (572 B (read)+ 40 B (write))
t Kernel runtime

α, β Fit parameters; β: effective bandwidth

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 27 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Effective Bandwidth
Measurements

0 10 20 30 40 50
Information Exchange I / MB

0

100

200

300

400

500

600

700

M
in

im
um

 K
er

ne
l D

ur
at

io
n

t /
 µ

s

Fit parameters

K20: t = 19.05 + I/0.077
K40: t = 14.97 + I/0.095
½ K80: t = 14.5 + I/0.1
P100: t = 21.26 + I/0.285

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 28 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Effective Bandwidth
Measurements

0 10 20 30 40 50
Information Exchange I / MB

0

100

200

300

400

500

600

700

M
in

im
um

 K
er

ne
l D

ur
at

io
n

t /
 µ

s

Fit parameters

K20: t = 19.05 + I/0.077
K40: t = 14.97 + I/0.095
½ K80: t = 14.5 + I/0.1
P100: t = 21.26 + I/0.285

K20: 77 GB/s
K40: 95 GB/s

1⁄2K80: 100 GB/s
P100: 285 GB/s

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 28 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Effective Bandwidth
Measurements

0 10 20 30 40 50
Information Exchange I / MB

0

100

200

300

400

500

600

700

M
in

im
um

 K
er

ne
l D

ur
at

io
n

t /
 µ

s

Fit parameters

K20: t = 19.05 + I/0.077
K40: t = 14.97 + I/0.095
½ K80: t = 14.5 + I/0.1
P100: t = 21.26 + I/0.285

K20: 77 GB/s
K40: 95 GB/s

1⁄2K80: 100 GB/s
P100: 285 GB/s

K20: 77 GB/s 31%
K40: 95 GB/s 33%

1⁄2K80: 100 GB/s 42%
P100: 285 GB/s 40%

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 28 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Clock Dependency
Defining the relation

Another free parameter: GPU clock rates
Varies significantly across GPU architecture generations and
models

→ Incorporate clock into performancemodel

β(C) = γ + δ C

C GPU clock rate
β Effective bandwidth (from before)

γ, δ Fit parameters

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 29 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Clock Dependency
Defining the relation

Another free parameter: GPU clock rates
Varies significantly across GPU architecture generations and
models

→ Incorporate clock into performancemodel

β(C) = γ + δ C

C GPU clock rate
β Effective bandwidth (from before)

γ, δ Fit parameters

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 29 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Clock Dependency
Defining the relation

Another free parameter: GPU clock rates
Varies significantly across GPU architecture generations and
models

→ Incorporate clock into performancemodel

β(C) = γ + δ C

C GPU clock rate
β Effective bandwidth (from before)

γ, δ Fit parameters

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 29 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Clock Dependency
Measurements

600 800 1000 1200 1400
Graphics Clock Frequency / MHz

100

150

200

250

300

Ef
fe

ct
iv

e
Ba

nd
w

id
th

 /
 G

B/
s

0.138 GB/s / MHz
0.037 GB/s / MHz

0.106 GB/s / MHz

0.146 GB/s / MHz

K40
½ K80
P100

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 30 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Clock Dependency
Measurements

600 800 1000 1200 1400
Graphics Clock Frequency / MHz

100

150

200

250

300

Ef
fe

ct
iv

e
Ba

nd
w

id
th

 /
 G

B/
s

0.138 GB/s / MHz
0.037 GB/s / MHz

0.106 GB/s / MHz

0.146 GB/s / MHz

K40
½ K80
P100

K40: 0.106 (GB/s)/(MHz)
1⁄2K80: 0.138 (GB/s)/(MHz)

0.037 (GB/s)/(MHz)
P100: 0.146 (GB/s)/(MHz)

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 30 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary, Conclusion

Summary
Enabled JuSPIC for GPUwith OpenACC & CUDA Fortran
Particle data layout: SoA fastest
Slowmemory allocationwith PGI+MPI on POWER→ bug filed
Performancemodel: Information exchange (P100: 285 GB/s)
Studied model with different clock rates – P100 most efficient
scaling

Future
Port also Reducer to GPU
Enable MPI again
Alternatives to linked list

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 31 31

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Summary, Conclusion

Summary
Enabled JuSPIC for GPUwith OpenACC & CUDA Fortran
Particle data layout: SoA fastest
Slowmemory allocationwith PGI+MPI on POWER→ bug filed
Performancemodel: Information exchange (P100: 285 GB/s)
Studied model with different clock rates – P100 most efficient
scaling

Future
Port also Reducer to GPU
Enable MPI again
Alternatives to linked list

Thank you

for your att
ention!

a.herten@fz-juelich.de

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 31 31

mailto:a.herten@fz-juelich.de

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Appendix
Acknowledgements
Related Work
OpenACC Performance Progression
Linked List: Remove on JURON
Selected Performance Counters on JURON
References
Glossary

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 1 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Acknowledgements

The work was done in context of two groups:
POWER Acceleration and Design Centre A collaboration of IBM,

NVIDIA, and Forschungszentrum Jülich
NVIDIA Application Lab A collaboration of NVIDIA and

Forschungszentrum Jülich
Many thanks to Jiri Kraus from NVIDIA, who helped tremendously
along the way
JURON, a prototype system for the Human Brain Project, received
co-funding from the European Union (Grant Agreement No.
604102)

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 2 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Related Work

Selection of other GPU PiC codes
PSC The code JuSPIC is based on has been reimplemented

in C and ported to GPU [4]
PIConGPU PiC code specifically developed for GPUs [5]
Minsky porting experiences
— “Addressing Materials Science Challenges Using GPU-accelerated

POWER8 Nodes” [6]
— “A Performance Model for GPU-Accelerated FDTD Applications” [7]

…more in paper!

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 3 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

OpenACC Performance Progression
Ru

nt
im

e
/

µs

5×

10×

15×

20×

Speedup of Kernel, relative to No-GPU
Speedup of full Pusher, relative to OpenACC (min. unrolled)

24×
21×21×21×

3×

Figure: See GTC poster for details [8].
Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 4 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Linked List: Time for Remove on JURON
For different compilers

10
00

00

10
00

00
0

25
00

00
0

50
00

00
0

75
00

00
0

10
00

00
00

25
00

00
00

50
00

00
00

75
00

00
00

10
00

00
00

0

Number of Particles

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ru
nt

im
e

pe
r p

ar
tic

le
 /

 s

1e 7 Normalized Runtimes for PGI Compiler (w and w/o MPI)

None,System,Compiler
(Remove_, JUHYDRA, PGI)
(Remove_, JUHYDRA, PGIMPI)
(Remove_, JURECA, PGI)
(Remove_, JURECA, PGIMPI)
(Remove_, JURON, PGI)
(Remove_, JURON, PGIMPI)

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 5 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Selected Performance Counters on JURON
For different compilers

0

50

100

150

200

250

300

350

400

Co
un

te
r V

al
ue

 p
er

 P
ar

tic
le

PAPI_TOT_INS

0

100

200

300

400

500

Co
un

te
r V

al
ue

 p
er

 P
ar

tic
le

PAPI_TOT_CYC
10

00
0

10
00

00

25
00

00

50
00

00

75
00

00

10
00

00
0

25
00

00
0

50
00

00
0

75
00

00
0

10
00

00
00

Number of Particles

0

1

2

3

4

5

6

7

8

Co
un

te
r V

al
ue

 p
er

 P
ar

tic
le

PAPI_L1_DCM

gfortran
mpifort
pgfortran

10
00

0

10
00

00

25
00

00

50
00

00

75
00

00

10
00

00
0

25
00

00
0

50
00

00
0

75
00

00
0

10
00

00
00

Number of Particles

0

50

100

150

200

250

300

350

Co
un

te
r V

al
ue

 p
er

 P
ar

tic
le

PAPI_STL_ICY

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 6 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References: Images, Graphics I

[1] Forschungszentrum Jülich. Hightechmade in 1960: A view into
the control room of DIDO. URL: http://historie.fz-
juelich.de/60jahre/DE/Geschichte/1956-
1960/Dekade/_node.html (page 3).

[2] Forschungszentrum Jülich. Forschungszentrum Bird’s Eye.
(Page 3).

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 7 14

http://historie.fz-juelich.de/60jahre/DE/Geschichte/1956-1960/Dekade/_node.html
http://historie.fz-juelich.de/60jahre/DE/Geschichte/1956-1960/Dekade/_node.html
http://historie.fz-juelich.de/60jahre/DE/Geschichte/1956-1960/Dekade/_node.html

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References I

[3] Phil Mucci and The ICL Team. PAPI, the Performance Application
Programming Interface. URL: http://icl.utk.edu/papi/
(visited on 04/30/2017) (pages 63–66, 100).

[4] K. Germaschewski et al. “The Plasma Simulation Code: A
modern particle-in-cell code with load-balancing and GPU
support”. In: ArXiv e-prints (Oct. 2013). arXiv: 1310.7866
[physics.plasm-ph] (page 90).

[5] M. Bussmann et al. “Radiative signature of the relativistic
Kelvin-Helmholtz Instability”. In: 2013 SC - International
Conference for High Performance Computing, Networking,
Storage and Analysis (SC). Nov. 2013, pp. 1–12. DOI:
10.1145/2503210.2504564 (page 90).

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 8 14

http://icl.utk.edu/papi/
http://arxiv.org/abs/1310.7866
http://arxiv.org/abs/1310.7866
https://doi.org/10.1145/2503210.2504564

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References II

[6] Paul F. Baumeister et al. “Addressing Materials Science
Challenges Using GPU-accelerated POWER8 Nodes”. In:
Euro-Par 2016: Parallel Processing: 22nd International
Conference on Parallel and Distributed Computing, Grenoble,
France, August 24-26, 2016, Proceedings. Ed. by
Pierre-François Dutot and Denis Trystram. Cham: Springer
International Publishing, 2016, pp. 77–89. ISBN:
978-3-319-43659-3. DOI: 10.1007/978-3-319-43659-3_6. URL:
http://dx.doi.org/10.1007/978-3-319-43659-3_6
(page 90).

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 9 14

https://doi.org/10.1007/978-3-319-43659-3_6
http://dx.doi.org/10.1007/978-3-319-43659-3_6

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

References III

[7] P. F. Baumeister et al. “A Performance Model for
GPU-Accelerated FDTD Applications”. In: 2015 IEEE 22nd
International Conference on High Performance Computing
(HiPC). Dec. 2015, pp. 185–193. DOI: 10.1109/HiPC.2015.24
(page 90).

[8] Andreas Herten, Dirk Pleiter, and Dirk Brömmel. Accelerating
Plasma Physics with GPUs (Poster). Tech. rep. GPU Technology
Conference, 2017 (page 91).

[9] Philip J. Mucci et al. “PAPI: A Portable Interface to Hardware
Performance Counters”. In: In Proceedings of the Department of
Defense HPCMP Users Group Conference. 1999, pp. 7–10
(page 100).

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 10 14

https://doi.org/10.1109/HiPC.2015.24

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary I

CUDA Computing platform for GPUs from NVIDIA. Provides,
among others, CUDA C/C++. 2, 22, 23, 24, 26, 27, 28, 29,
30, 31, 32, 33, 34, 86, 87

FZJ Forschungszentrum Jülich, a research center in the
west of Germany. 3, 98

JSC Jülich Supercomputing Centre operates a number of
large and small supercomputers and connected
infrastructure at FZJ. 3

JuSPIC Jülich Scalable Particle-in-Cell Code. 2, 9, 10, 11, 26,
27, 28, 29, 30, 31, 63, 64, 65, 66, 75, 76, 77, 86, 87, 90

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 11 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary II

MPI The Message Passing Interface, a communication
message-passing application programmer interface.
63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 86, 87

NVIDIA US technology company creating GPUs. 3, 4, 5, 6, 7, 8,
89, 98

NVLink NVIDIA’s communication protocol connecting CPU↔
GPU and GPU↔ GPUwith 80GB/s. PCI-Express:
16 GB/s. 4, 5, 6, 7, 8, 98

OpenACC Directive-based programming, primarily for many-core
machines. 2, 14, 15, 16, 17, 18, 21, 22, 23, 24, 32, 33, 34,
37, 38, 39, 40, 41, 86, 87, 88, 91

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 12 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary III

P100 A large GPUwith the Pascal architecture fromNVIDIA. It
employs NVLink as its interconnect and has fast HBM2
memory. 2, 4, 5, 6, 7, 8, 79, 80, 85, 86, 87

PAPI The Performance API, a interface for accessing
performance counters, also with aliased names
cross-platform [3, 9]. 63, 64, 65, 66

Pascal The latest available GPU architecture from NVIDIA. 98
PGI Formerly The Portland Group, Inc.; since 2013 part of

NVIDIA. 2, 26, 27, 28, 29, 30, 31, 67, 68, 69, 70, 71, 72, 73,
86, 87

PiC Particle in Cell; a method applied in a group of
(plasma) physics simulations to solve partial
differential equations. 2, 10, 11, 90

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 13 14

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary IV

POWER Series of microprocessors from IBM. 2, 3, 67, 68, 69, 70,
71, 72, 73, 86, 87, 89

Tesla The GPU product line for general purpose computing
computing of NVIDIA. 4, 5, 6, 7, 8

Andreas Herten | GPU-PiC on Minsky | 22 July 2017 # 14 14

	About
	About JSC
	About Supercomputers

	JuSPIC
	Program Description
	Steps

	Acceleration for GPUs
	OpenACC
	CUDA Fortran
	Data Layout Analysis
	Data Layout Conversion

	Performance Modelling
	Effective Bandwidth
	Clock Rates

	Conclusions & Outlook
	Appendix
	Appendix
	Acknowledgements
	Related Work
	OpenACC Performance Progression
	Linked List: Remove on JURON
	Selected Performance Counters on JURON
	References
	Glossary

